Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(8): e10067, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991984

RESUMO

Sulfur-containing compounds are considered as attractive pharmacophores for discovery of new drugs regarding their versatile properties to interact with various biological targets. Quantitative structure-activity relationship (QSAR) modeling is one of well-recognized in silico tools for successful drug discovery. In this work, a set of 38 sulfur-containing derivatives (Types I-VI) were evaluated for their in vitro anticancer activities against 6 cancer cell lines. In vitro findings indicated that compound 13 was the most potent cytotoxic agent toward HuCCA-1 cell line (IC50 = 14.47 µM). Compound 14 exhibited the most potent activities against 3 investigated cell lines (i.e., HepG2, A549, and MDA-MB-231: IC50 range = 1.50-16.67 µM). Compound 10 showed the best activity for MOLT-3 (IC50 = 1.20 µM) whereas compound 22 was noted for T47D (IC50 = 7.10 µM). Subsequently, six QSAR models were built using multiple linear regression (MLR) algorithm. All constructed QSAR models provided reliable predictive performance (training sets: Rtr range = 0.8301-0.9636 and RMSEtr = 0.0666-0.2680; leave-one-out cross validation sets: RCV range = 0.7628-0.9290 and RMSECV = 0.0926-0.3188). From QSAR modeling, chemical properties such as mass, polarizability, electronegativity, van der Waals volume, octanol-water partition coefficient, as well as frequency/presence of C-N, F-F, and N-N bonds in the molecule are essential key predictors for anticancer activities of the compounds. In summary, a series of promising fluoro-thiourea derivatives (10, 13, 14, 22) were suggested as potential molecules for future development as anticancer agents. Key structure-activity knowledge obtained from the QSAR modeling was suggested to be advantageous for suggesting the effective rational design of the related sulfur-containing anticancer compounds with improved bioactivities and properties.

2.
ACS Omega ; 7(21): 17881-17893, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664590

RESUMO

Epidermal growth factor receptor (EGFR) has been recognized as one of the attractive targets for anticancer drug development. Herein, a set of anilino-1,4-naphthoquinone derivatives (3-18) was synthesized and investigated for their anticancer and EGFR inhibitory potentials. Among all tested compounds, three derivatives (3, 8, and 10) were selected for studying EGFR inhibitory activity (in vitro and in silico) due to their most potent cytotoxic activities against six tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, MDA-MB-231, and T47D; IC50 values = 1.75-27.91 µM), high selectivity index (>20), and good predicted drug-like properties. The experimental results showed that these three promising compounds are potent EGFR inhibitors with nanomolar IC50 values (3.96-18.64 nM). Interestingly, the most potent compound 3 bearing 4-methyl substituent on the phenyl ring displayed 4-fold higher potency than the known EGFR inhibitor, erlotinib. Molecular docking, molecular dynamics simulation, and MM/GBSA-based free energy calculation revealed that van der Waals force played a major role in the accommodations of compound 3 within the ATP-binding pocket of EGFR. Additionally, the 4-CH3 moiety of the compound was noted to be a key chemical feature contributing to the highly potent EGFR inhibitory activity via its formations of alkyl interactions with A743, K745, M766, and L788 residues as well as additional interactions with M766 and T790.

3.
ACS Omega ; 6(47): 31854-31868, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34870008

RESUMO

A library of 44 indole-sulfonamide derivatives (1-44) were investigated for their cytotoxic activities against four cancer cell lines (i.e., HuCCA-1, HepG2, A549, and MOLT-3) and antimalarial effect. Most of the studied indoles exhibit anticancer activity against the MOLT-3 cell line, whereas only hydroxyl-containing bisindoles displayed anticancer activities against the other tested cancer cells as well as antimalarial effect. The most promising anticancer compounds were noted to be CF3, Cl, and NO2 derivatives of hydroxyl-bearing bisindoles (30, 31, and 36), while the most promising antimalarial compound was an OCH3 derivative of non-hydroxyl-containing bisindole 11. Five quantitative structure-activity relationship (QSAR) models were successfully constructed, providing acceptable predictive performance (training set: R = 0.6186-0.9488, RMSE = 0.0938-0.2432; validation set: R = 0.4242-0.9252, RMSE = 0.1100-0.2785). QSAR modeling revealed that mass, charge, polarizability, van der Waals volume, and electronegativity are key properties governing activities of the compounds. QSAR models were further applied to guide the rational design of an additional set of 22 compounds (P1-P22) in which their activities were predicted. The prediction revealed a set of promising virtually constructed compounds (P1, P3, P9, P10, and P16) for further synthesis and development as anticancer and antimalarial agents. Molecular docking was also performed to reveal possible modes of bindings and interactions between the studied compounds and target proteins. Taken together, insightful structure-activity relationship information obtained herein would be beneficial for future screening, design, and structural optimization of the related compounds.

4.
Phys Chem Chem Phys ; 23(48): 27320-27326, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34850788

RESUMO

Lead mixed-halide perovskites are promising absorption materials that are suitable for applications in tandem solar cells using existing silicon technology. Charge-carrier mobility is an important factor that affects the performance of tandem solar cells. However, a detailed understanding of the fundamental mechanisms of lead mixed-halide perovskites remains elusive. Here, we used LO (longitudinal optical) phonons and alloy scattering to the elucidate charge-carrier mobilities in the FA0.83Cs0.17Pb(I1-xBrx)3 hybrid perovskite system. It was found that these scattering mechanisms provided very good quantitative agreement with the experimental results, between 11-40 cm2 V-1 s-1. Our findings provide new insights into charge transport scattering in lead mixed-halide hybrid perovskites and pave the way toward design of novel semiconductor alloys for solar cell applications.

5.
Nanoscale ; 12(26): 14112-14119, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32597440

RESUMO

A comprehensive study of the transport properties of a prototypical CH3NH3PbI3 thin film is presented. The polaron-longitudinal optical (LO) phonon scattering mechanism, based on Low-Pines's polaron mobility, was studied to elucidate the charge-carrier mobility. We found that the calculated mobilities showed very good quantitative agreement with the experimental data measured in thin film samples using photoconductivity techniques. In THz mobility, the calculated results yielded room-temperature (RT) mobilities of ∼650 cm2 V-1 s-1 (single crystal) and ∼220 cm2 V-1 s-1 (disordered thin film) at a low quantum yield (φ) and 32 cm2 V-1 s-1 (high-quality thin film) at φ = 1. The dynamic disorder due to organic reorientation was included in the calculations. Its effect provided a power law mobility of µ ∝ Tm and satisfactorily supported temperature-dependent mobility over the temperature range of 80-370 K. In the orthorhombic and tetragonal phases, the charge-carrier mobilities with dynamic disorder were approximately 47% and 22% lower than those obtained from phases without dynamic disorder. The RT mobility was 26 cm2 V-1 s-1 at φ = 1. In the low-temperature orthorhombic phase, the structural phase transition was considered. The mobility followed a power law with m = -1.7. In the tetragonal and cubic phases, the mobility also followed a power law, but with m = -1.1, which is an intermediate range in optical phonon scattering. When combined with recent theoretical analysis, we also found three limitations of power law mobility with exponents between -0.46 and -1.1 for polaron-LO phonon scattering, -1.2 and -1.6 for bare carrier-LO phonon scattering, and -1.7 and -2.0 for carrier scattering off optical phonons and lattice fluctuations. This work not only provides a description of temperature-dependent mobility in CH3NH3PbI3 thin films, but also gives new insights into THz photoconductivity and the relationship between LO phonon scattering and power law mobility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...